Greedy metrics in orthogonal greedy learning

نویسندگان

  • Lin Xu
  • Shaobo Lin
  • Jinshan Zeng
  • Zongben Xu
چکیده

Orthogonal greedy learning (OGL) is a stepwise learning scheme that adds a new atom from a dictionary via the steepest gradient descent and build the estimator via orthogonal projecting the target function to the space spanned by the selected atoms in each greedy step. Here, “greed” means choosing a new atom according to the steepest gradient descent principle. OGL then avoids the overfitting/underfitting by selecting an appropriate iteration number. In this paper, we point out that the overfitting/underfitting can also be avoided via redefining “greed” in OGL. To this end, we introduce a new greedy metric, called δ-greedy thresholds, to refine “greed” and theoretically verifies its feasibility. Furthermore, we reveals that such a greedy metric can bring an adaptive termination rule on the premise of maintaining the prominent learning performance of OGL. Our results show that the steepest gradient descent is not the unique greedy metric of OGL and some other more suitable metric may lessen the hassle of model-selection of OGL.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Online Greedy Learning with Semi-bandit Feedbacks

The greedy algorithm is extensively studied in the field of combinatorial optimization for decades. In this paper, we address the online learning problem when the input to the greedy algorithm is stochastic with unknown parameters that have to be learned over time. We first propose the greedy regret and -quasi greedy regret as learning metrics comparing with the performance of offline greedy al...

متن کامل

Approximation and learning by greedy algorithms

We consider the problem of approximating a given element f from a Hilbert space H by means of greedy algorithms and the application of such procedures to the regression problem in statistical learning theory. We improve on the existing theory of convergence rates for both the orthogonal greedy algorithm and the relaxed greedy algorithm, as well as for the forward stepwise projection algorithm. ...

متن کامل

Learning and approximation capability of orthogonal super greedy algorithm

We consider the approximation capability of orthogonal super greedy algorithms (OSGA) and its applications in supervised learning. OSGA is concerned with selecting more than one atoms in each iteration step, which, of course, greatly reduces the computational burden when compared with the conventional orthogonal greedy algorithm (OGA). We prove that even for function classes that are not the co...

متن کامل

Greedy Approaches to Symmetric Orthogonal Tensor Decomposition

Finding the symmetric and orthogonal decomposition (SOD) of a tensor is a recurring problem in signal processing, machine learning and statistics. In this paper, we review, establish and compare the perturbation bounds for two natural types of incremental rank-one approximation approaches. Numerical experiments and open questions are also presented and discussed.

متن کامل

INTERDISCIPLINARY MATHEMATICS INSTITUTE 2010 : 01 Orthogonal super greedy algorithm and application in compressed sensing IMI

The general theory of greedy approximation is well developed. Much less is known about how specific features of a dictionary can be used for our advantage. In this paper we discuss incoherent dictionaries. We build a new greedy algorithm which is called the Orthogonal Super Greedy Algorithm (OSGA). OSGA is more efficient than a standard Orthogonal Greedy Algorithm (OGA). We show that the rates ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1411.3553  شماره 

صفحات  -

تاریخ انتشار 2014